Noncommutative Double Bruhat Cells and Their Factorizations

نویسندگان

  • ARKADY BERENSTEIN
  • VLADIMIR RETAKH
چکیده

0. Introduction 1 1. Quasideterminants and Quasiminors 3 1.1. Definition of quasideterminants 3 1.2. Elementary properties of quasideterminants 4 1.3. Noncommutative Sylvester formula 5 1.4. Quasi-Plücker coordinates and Gauss LDU -factorization 5 1.5. Positive quasiminors 6 2. Basic factorizations in GLn(F) 7 3. Examples 11 3.1. A factorization in the Borel subgroup of GL3(F) 11 3.2. A factorization in GL3(F) 12 3.3. A factorization in the unipotent subgroup of GL4(F) 13 4. Double Bruhat cells in GLn(F) and their factorizations 13 4.1. Structure of GLn(F) 13 4.2. Bruhat cells and Double Bruhat cells 15 4.3. Factorization problem for noncommutative double Bruhat cells 16 5. Other factorizations in GLn(F) and the twist ψoo 23 References 26

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Some Algebras Associated to Directed Graphs and Related to Factorizations of Noncommutative Polynomials

This is a survey of recently published results. We introduce and study a wide class algebras associated to directed graphs and related to factorizations of noncommutative polynomials. In particular, we show that for many well-known graphs such algebras are Koszul and compute their Hilbert series. Let R be an associative ring with unit and P (t) = a0t +a1t +· · ·+an be a polynomial over R. Here ...

متن کامل

The Number of Connected Components in the Double Bruhat Cells for Nonsimply-laced Groups

We compute the number of connected components in a generic real double Bruhat cell for series Bn and Cn and an exceptional group F4.

متن کامل

Double Bruhat Cells and Total Positivity Sergey Fomin and Andrei Zelevinsky

0. Introduction 2 1. Main results 3 1.1. Semisimple groups 3 1.2. Factorization problem 4 1.3. Total positivity 5 1.4. Generalized minors 5 1.5. The twist maps 6 1.6. Formulas for factorization parameters 7 1.7. Total positivity criteria 8 1.8. Fundamental determinantal identities 9 2. Preliminaries 10 2.1. Involutions 10 2.2. Commutation relations 10 2.3. Generalized determinantal identities 1...

متن کامل

Double Bruhat Cells and Total Positivity

0. Introduction 336 1. Main results 337 1.1. Semisimple groups 337 1.2. Factorization problem 338 1.3. Total positivity 339 1.4. Generalized minors 339 1.5. The twist maps 340 1.6. Formulas for factorization parameters 341 1.7. Total positivity criteria 343 1.8. Fundamental determinantal identities 343 2. Preliminaries 344 2.1. Involutions 344 2.2. Commutation relations 345 2.3. Generalized det...

متن کامل

Quantum cluster algebras and quantum nilpotent algebras.

A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the correspondin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002